E07-002: Wide-Angle Compton Scattering

David Hamilton on behalf of the E07-002 Collaboration

Hall C Users Meeting 18th January 2008

Presentation Outline:

- Overview of the physics of Wide-Angle Compton Scattering
- Jefferson Lab WACS programme
- Experimental and analysis techniques
- Installation and run plan
- Summary

Why WACS?

Proton Compton scattering in the wide-angle regime (s, -t, -u $>> m^2_{\text{nucleon}}$) is a powerful and under-utilised probe of nucleon structure.

Similar physics in play as in elastic ep or DVCS: characterise electromagnetic response of the nucleon without complications from additional hadrons.

Main issues:

- Competing reaction mechanisms
- Interplay between hard and soft processes
- Threshold for onset of asymptotic regime
- Role of hadron helicity flip

Test of Reaction Mechanism

A number of reaction mechanisms proposed over the years:

- Diquark model
- Leading quark
- GPDs (handbag)
- CQM

- Regge poles VMD since 1960's ..., Laget
- pQCD two-gluon Brodsky, ..., Guichon&Vanderhaeghen, Brooks&Dixon, Thomson et al.
 - Guichon&Kroll, 1996
 - Brodsky et al., 1972
 - Radyushkin, Kroll et al.
 - G.Miller

GPDs in the Handbag Approach

$$\gamma p \rightarrow \gamma p$$

$$ep \rightarrow ep$$

$$\begin{split} R_{_{V}}(t) &=& \sum_{a} e_{a}^{2} \int_{-1}^{1} \frac{dx}{x} H^{a}(x,0,t), & F_{_{1}}(t) &=& \sum_{a} e_{a} \int_{-1}^{1} dx \, H^{a}(x,0,t), \\ R_{_{A}}(t) &=& \sum_{a} e_{a}^{2} \int_{-1}^{1} \frac{dx}{x} \operatorname{sign}(\mathbf{x}) \, \hat{\mathbf{H}}^{a}(\mathbf{x},0,t), & G_{_{A}}(t) &=& \sum_{a} \int_{-1}^{1} dx \operatorname{sign}(\mathbf{x}) \, \hat{\mathbf{H}}^{a}(\mathbf{x},0,t), \\ R_{_{T}}(t) &=& \sum_{a} e_{a}^{2} \int_{-1}^{1} \frac{dx}{x} E^{a}(x,0,t), & F_{_{2}}(t) &=& \sum_{a} e_{a} \int_{-1}^{1} dx \, E^{a}(x,0,t), \end{split}$$

GPD	x^{-1} moment	x^0 moment	t=0 limit
$H^a(x,0,t)$	$R_{_{V}}(t)$	$F_1(t)$	q(x)
$\hat{H}^a(x,0,t)$	$R_{\scriptscriptstyle A}(t)$	$G_{\scriptscriptstyle A}(t)$	$\Delta q(x)$
$E^a(x,0,t)$	$R_{_T}(t)$	$F_2(t)$	2J(x)/x - q(x)

The Jlab WACS Programme

- E07-002 is part of an ongoing WACS programme at Jlab.
- E99-114 measured cross sections over a broad kinematic range and polarisation observables at a single kinematic point.
- Polarisation result was strong but needs further confirmation at higher s, -t and -u.

E99-114 Results

Danagoulian et al, PRL 98, 152001

Hamilton et al, PRL 94, 242001

- Disagreement with pQCD predictions but K, at low -u.
- Handbag predictions show good agreement.

$$s = 6.9 \text{ GeV}^2$$

- $t = 4.0$
- $u = 1.13$

Experimental Goals

Polarization Transfer K, ,

$$K_{\scriptscriptstyle LL} \frac{d\sigma}{dt} \equiv \frac{1}{2} \left[\frac{d\sigma(\uparrow\downarrow)}{dt} - \frac{d\sigma(\uparrow\downarrow)}{dt} \right]$$

$$K_{{\scriptscriptstyle LT}} rac{d\sigma}{dt} \, \equiv \, rac{1}{2} \left[rac{d\sigma(\uparrow
ightarrow)}{dt} - rac{d\sigma(\downarrow
ightarrow)}{dt}
ight]$$

$$P_{\scriptscriptstyle N} rac{d\sigma}{dt} \equiv rac{1}{2} \left[rac{d\sigma(\uparrow)}{dt} - rac{d\sigma(\downarrow)}{dt}
ight]$$

- 1. Provide a stringent test of the notion that the WACS proceeds via photon interaction with a single quark K_{LL} .
- 2. Measure K_{LS} and P_N in order to stimulate in further development of the theoretical framework.

Experimental Technique

Analysis Technique: Event Selection

Off-endpoint kinematics

Endpoint kinematics

- Use two-body kinematic correlation to separate WACS and π^0 background.
- Depends critically upon combined HMS-BigCal angular resolution.

Analysis Technique: Polarisation Observables

- Double analyser FPP used to extract beam-helicity asymmetries at HMS focal plane.
- Understanding HMS spin precession allows determination of polarisation observables at target.

Hall C Layout and Kinematics

 Only differences between WACS and GEp III are BigBite magnet and bremsstrahlung radiator.

•
$$E_{beam} = 4.59 \text{ GeV}$$

Off-endpoint kinematics:

$$= 4.1 \text{ GeV}$$

HMS $\theta/p = 38.3 \text{ deg} / 2.02 \text{ GeV/c}$
BigCal $\theta/D = 26.5 \text{ deg} / 18.4 \text{ m}$

Endpoint kinematics:

HMS
$$\theta/p = 35.8 \text{ deg} / 2.31 \text{ GeV/c}$$

BigCal $\theta/D = 26.5 \text{ deg} / 18.4 \text{ m}$

Installation Plan

Friday 25/01/08 (Day)

- Move BigBite Magnet into place.
- Connect BigBite water supply and energise coils.
- Change S0 trigger scintillator in HMS detector stack.
- Make corresponding changes to trigger and coincidence timing.
- Move HKS magnet in order to free up some space.
- Move BigCal into position.
- Complete safety checklist.

Run Plan

Friday 25/01/08 (Swing) – Friday 01/02/08 (Owl)

- Check beam position and energy.
- Take commissioning data at endpoint kinematics
 - Optics data (sieve slit);
 - HMS alignment with C foils target;
 - check BigBite magnet deflection
- Take Moller measurement (Sat morning).
- Move to off-endpoint kinematics
 - Check counting rates, deadtime and calorimeter threshold
 - Begin production running

Online Analysis Plan

- Create /home/cdaq/WACS07 directory.
- Copy Analyzer and all necessary tools from GEp..
- Only minor changes necessary to the code.
- Monitoring of detector systems will be the same as GEp.
- Physics analysis of all data will be performed while experiment is running on the batch farm.
- Thanks to GEp students (Andrew, Mehdi and Wei) for agreeing to take analysis swing and owl shifts.

Contact People

Spokespeople:

Bogdan Wojtsekhowski (bogdan@jlab.org)

Ron Gilman (gilman@jlab.org)

Alan Nathan (nathan@jlab.org)

Run coordinator:

Bogdan Wojtsekhowski (bogdan@jlab.org)

Analysis coordinator:

David Hamilton (dhamilto@jlab.org)

Website and Wiki:

http://hallcweb.jlab.org/experiments/rcs/

Summary

- WACS is a powerful probe of proton structure, which is similar to elastic ep and DVCS and can be described in terms of moments of GPDs.
- Will learn more about reaction mechanism and non-perturbative proton structure.
- Experimental and analysis techniques are well understood and tested.
- Plans are in place for installation, run and online analysis.
- Shifts are all filled.
- Turnaround for results is expected to be relatively quick.
- We will have a PhD student for this measurement.
- 80 % of planned 12 GeV WACS programme will be in Hall C.

